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from a greenhouse trial. The range in Zn and Fe concentra-
tion across the RILs was, respectively, 18.8–73.5 and 25.3–
59.5 ppm, and the concentrations of the two elements were 
positively correlated with one another (rp  =+0.79). Ten 
QTL (five each for Zn and Fe accumulation) were detected, 
mapping to seven different chromosomes. The chromo-
some 2B and 6A grain Zn QTL were consistently expressed 
across environments. The proportion of the phenotype 
explained (PVE) by QZn.bhu-2B was >16 %, and the locus 
was closely linked to the SNP marker 1101425|F|0, while 
QZn.bhu-6A (7.0  % PVE) was closely linked to DArT 
marker 3026160|F|0. Of the five Fe QTL detected, three, 
all mapping to chromosome 1A were detected in all seven 
environments. The PVE for QFe.bhu-3B was 26.0 %.

Introduction

A healthy human diet requires a minimal intake of energy, 
protein and minerals, and this cannot be fully met by a 
wholly cereal-based diet (Welch and Graham 2004). It has 
been estimated that at least 40  % of the world’s popula-
tion, with a heavy representation of women and children in 
developing countries, suffers from a dietary deficiency in 
zinc (Zn) and iron (Fe) (Liu et al. 2006; Welch and Graham 
2004). Wheat is globally the world’s second most impor-
tant cereal, representing ca. 44  % (estimated 2012/13) of 
global cereal consumption (FAO 2013), therefore its bio-
fortification with respect to Zn and Fe could have a measur-
able impact on levels of malnutrition.

Breeding for a higher accumulation of minerals, as 
for any heritable trait, requires the availability of relevant 
genetic variation. The genetic basis of quantitative traits of 
this nature can be most easily obtained by linkage mapping, 
taking advantage of increasingly informative molecular 
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marker platforms. The successful identification of quantita-
tive trait loci (QTL) underlying grain Zn and Fe concentra-
tion has the potential to accelerate crop improvement via 
the deployment of marker-assisted selection, and beyond 
this to the isolation of the gene(s) responsible for the QTL 
(Salvi and Tuberosa 2005).

Although variation of grain Fe and Zn concentration 
has been established to have a firm genetic basis (Gregorio 
2002). The trait is also highly environmentally dependent, 
and is particularly sensitive to the concentration of these 
elements in the soil (Fiel et  al. 2005). As a result, efforts 
to map the genes involved have frequently highlighted the 
genotype  ×  environment interactions (Trethowan 2007; 
Trethowan et al. 2005; Joshi et al. 2010). Across the East-
ern Gangetic Plains, the major wheat growing area of India, 
soil analyses have shown that the quantity of available Fe 
is generally less variable than that of Zn (Joshi et al. 2010). 
The quantitative inheritance of grain Fe and Zn in wheat, 
alongside the low heritability of the trait and the large envi-
ronment and genotype  ×  environment interactions asso-
ciated with them, have slowed the progress in achieving 
genetic gain. Here, we report the mapping of several grain 
Zn and Fe concentration QTL, using a set of recombinant 
inbred lines (RILs) bred from a cross between a Zn and Fe 
accumulator (Triticum spelta) and a Zn and Fe poor T. aes-
tivum cultivar. The material was tested across three loca-
tions and over two consecutive cropping seasons, as well as 
in a controlled greenhouse trial.

Materials and methods

Parental lines, mapping population and grain analysis

A mapping population comprising 185 RILs was developed 
from the cross T. spelta accession H+ 26 (PI348449) × T. 
aestivum cv. HUW 234. The latter has been a popular cul-
tivar in the North-Eastern Plains Zone of India over the 
last two decades; its grain accumulates only low levels of 
both Zn and Fe, unlike those of H+ 26. The T. spelta par-
ent H+26 was identified from the collection of >300 spelt 
accessions in CIMMYT gene bank. All T. spelta lines were 
not good Zn and Fe accumulators. There was huge genetic 
diversity within spelt gene pool, and H+26 was one of the 
best Zn and Fe accumulator. The RILs were developed fol-
lowing methods set out by Singh and Rajaram (1991) and 
Joshi et al. (2004). The population was field grown in three 
locations, namely, Banaras Hindu University (BHU), Vara-
nasi (25.25°N, 82.99°E), Rajiv Gandhi South Campus 
(RGSC), Mirzapur (25.13°N, 82.56°E) (RGSC) and Indian 
Agriculture Research Institute (IARI), New Delhi (28.64°N, 
77.16°E) over two consecutive cropping seasons (2010–
2011 and 2011–2012). A further trial was conducted under 

greenhouse (GH) conditions in 2011. Planting of the RILs, 
along with the two parents, was carried out in the first week 
of December in a randomized complete block design with 
two replications. Each plot comprised three 2-m rows, with 
an inter-row spacing of 20  cm. The plants were provided 
with adequate N, P and K fertilizer (120 kg N, 60 kg P2O5 
and 40 kg K2O per ha), along with an application of 25 kg 
per ha Zn. The K2O and P2O5 fertilizer were provided at sow-
ing, but the N application was split between 60 kg at sowing, 
30 kg 21 days after sowing and 30 kg 45 days after sowing. 
The GH experiment soil was fertilized at a rate equivalent to 
120 kg N, 80 kg P2O5, 60 kg K2O and 20 kg Zn per ha. At 
harvest, 20 intact spikes were recovered from each RIL and 
parent plot, and hand threshed. The grain was subjected to 
Zn and Fe analysis using X-ray fluorescence (EDXRF spec-
trometer X-Supreme8000) (Paltridge et al. 2012).

Statistical analysis of phenotypic data

Analyses of variance (ANOVA) for grain Zn and Fe 
concentration in each of the seven environments were 
performed using the PROC GLM procedure included 
within the SAS v9.2 package (SAS Institute Inc.). Esti-
mates of the broad-sense heritability, both within 
and across the environments, were obtained from the 
ANOVA using the formulae h

2
= σ 2

g /(σ 2
G + σ 2

e /r), and 
h

2
= σ 2

G/(σ 2
G + σ 2

GE/E + σ 2
e 8rE), respectively, (Hallauer 

and Miranda Filho 1981). Here, σ 2
G, σ 2

GE and σ 2
e  represent, 

respectively, the genotypic variance, the genotype × envi-
ronment interaction and the error variance, while E and r 
represent, respectively, the number of environments and 
the number of replications. Phenotypic and genotypic cor-
relations between traits were calculated following Messmer 
et al. (2011), and Pearson correlation coefficients between 
grain Zn and Fe concentration were calculated using the 
PROC CORR procedure included within the SAS package.

Genotyping, linkage mapping and QTL analysis

Genomic DNA was extracted from 18-day-old seedlings 
using the Diversity Arrays Technology protocol described 
online at http://www.diversityarrays.com/sites/default/files/
pub/DArT_DNA_isolation.pdf. The resulting DNAs were 
used for genotyping by 13,460 single nucleotide polymor-
phism (SNP) and 14,791 DArT loci at DArT Pty. Ltd. (Can-
berra, Australia). The linkage map was assembled from 
the genotypic data using QTL IciMapping v3.2 software 
(http://www.isbreeding.net), applying a LOD threshold of 
3.0 between adjacent markers (Li et  al. 2007). QTL were 
identified with the inclusive composite interval mapping 
(ICIM) algorithm for additive gene effects implemented 
in QTL IciMapping v.3.2 software. The QTL expressed in 
each environment separately were defined, as also was the 

http://www.diversityarrays.com/sites/default/files/pub/DArT_DNA_isolation.pdf
http://www.diversityarrays.com/sites/default/files/pub/DArT_DNA_isolation.pdf
http://www.isbreeding.net
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set of QTL which were stable across all the environments. 
For both procedures, the walking step was set to 1 cM and 
a relaxed LOD threshold of 2.5 was applied to call sig-
nificance (Ribaut et  al. 1997; Tuberosa et  al. 2002). Sta-
bility was inferred when the LOD of the QTL × environ-
ment interaction (LODQEI) was <2.5. QTL nomenclature 
was standard (http://wheat.pw.usda.gov/ggpages/wgc/98/
Intro.htm). QTL × QTL interaction was also investigated.

Results

Performance across environments

The grain of the T. spelta parent H+ 26 accumulated sig-
nificantly more Zn (62.4 ppm) and Fe (54.9 ppm) than that 
of the T. aestivum parent cv. HUW 234 (respectively, 30.5 
and 35.2 ppm) (Table 1). The range in grain Zn concentra-
tion among the RILs was 8.8 ppm (BHU2011) to 73.5 ppm 
(GH), and in Fe concentration from 25.3 ppm (BHU2011) to 
59.5 ppm (GH) (Table 1). Zn and Fe accumulation was gen-
erally higher in GH than in any of the field experiments. The 
broad-sense heritability for Zn accumulation ranged, across 
the environments, from 0.34 to 0.86, and that for Fe from 
0.46 to 0.73. Averaged over the full set of environments, 
the two heritabilities were, respectively, 0.80 and 0.66. The 
Zn and Fe concentrations were positively correlated with 
one another, both at the phenotypic (rp) and the genotypic 
(rg) level at six of the seven environments (the exception 
was BHU2012) (Table 1). The distribution of grain Zn and 
Fe concentration across the RILs was continuous (Fig.  1). 
A Shapiro–Wilk test with respect to both Zn (W  =  0.97, 
P =  0.08) and Fe (W =  0.99, P =  0.76) revealed that the 
distributions were normal, and that the range lay between the 
parental values (Table 1; Fig. 1). The ANOVA showed that 
both the genotypic and the genotype × environment interac-
tion components of the variance were significant (Table 2).

Genetic map

The linkage map was constructed using 5,812 informative 
markers (3,122 DArT and 2,690 SNP). A total of 2,383 loci 
mapped to A genome chromosomes, 3,019 to B genome 
chromosomes and 410 to D genome chromosomes. Chro-
mosome 5D was completely unmarked, and chromosome 
2D harbored only one marker. The full map covered a 
genetic length of 20,446 cM with a mean inter-marker dis-
tance of 3.5 cM.

Variation in Zn and Fe concentration across environments

An analysis based on the Pearson correlation coefficient (r) 
revealed that grain Zn concentrations were quite consistent Ta
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across the seven environments, with r ranging from 0.26 to 
0.67 (Fig. 2). Similarly, Fe concentrations were consistent 
across the environments (r ranging from 0.09 to 0.35). The 
grain Zn and Fe concentrations were significantly and posi-
tively correlated with one another (rp = 0.79) (Fig. 2), sug-
gesting that the accumulation of these minerals operates via 
a common genetic mechanism.

QTL analysis of grain Zn concentration

Five QTL for grain Zn content were identified in all, asso-
ciated with a PVE (Phenotypic variance explained) of 
between 4.3 and 16.5  % (Table  3). QZn.bhu-2B was the 
most stably expressed QTL (Supplementary fig.  1.1), fol-
lowed by QZn.bhu-6A (Supplementary fig.  1.2). Both of 
these QTL were detectable in each of the seven environ-
ments, and also when performance was averaged across 
the seven environments. The PVE for QZn.bhu-2B was 
16.5  % across all environments, while the overall PVE 

for QZn.bhu-6A was 7.0  %. A QTL mapping to chromo-
some 3D (flanked by the DArT markers 1094214|F|0 and 
1057342|F|0) was detected in six of the seven environ-
ments and when performance was averaged across the 
seven environments; its overall PVE was 4.8 % (Table 3). 
Another QTL mapping to chromosome 2A (flanked by 
SNP marker 1126272|F|0 and DArT marker 2255234|F|0) 
was detected in four of the environments (PVE = 6.68 % 
at RGSC12). Finally, a chromosome 6B QTL was detected 
in only one environment, but was nevertheless signifi-
cant based on line mean performance over environments 
(PVE = 9.7 %). QZn.bhu-2B was tightly linked (0.68 cM) 

Fig. 1   Distribution of grain Zn and Fe concentration: mean performance over seven environments of the 185 RILs bred from the cross T. spelta 
H+ 26 × T. aestivum cv. HUW 234. Bars indicate the standard error (n = 7)

Table 2   Analysis of variance for grain Zn and Fe concentration 
measured across seven environments in a RIL population bred from 
the cross T. spelta H+ 26 × T. aestivum cv. HUW 234

Significant at ** P < 0.01

Source df Zn Fe

Environment 6 31,912.29** 19,645.44**

Replication 1 219.44** 137.42**

Genotype 184 199.42** 46.33**

Genotype × environment 1,104 25.01** 15.58**

Error 1,294 12.79 4.68

Fig. 2   Phenotypic correlation (r) between grain Zn and Fe concen-
tration in the RIL population tested across seven environments
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to the SNP marker 1101425|F|0, QZn.bhu-6A was sepa-
rated by 0.98  cM from DArT marker 3026160|F|0, and 
DArT marker 1094214|F|0 mapped within 0.21  cM of 
QZn.bhu-3D. The positive alleles at both QZn.bhu-2A and 
QZn.bhu-2B were contributed by the low Zn parent cv. 
HUW 234, while they were inherited from H+ 26 at the 
other three QTL. The significant QTL × environment inter-
actions (QEIs) included the two consistent and stable loci 
QZn.bhu-2B and QZn.bhu-6A, although the PVE associ-
ated with both was very low (respectively, 0.04 and 0.01 %; 
Table 3).

QTL analysis of grain Fe concentration

Five QTL were also detected underlying grain Fe con-
tent. Their PVEs ranged from 1.8 to 27.1  % (Table  3). 
QFe.bhu-1A.2 (overall PVE  =  7.5  %) and QFe.bhu-1A.3 
(PVE  =  16.6  %) were the most consistent and stable, 
followed by QFe.bhu-1A.1 (PVE  =  5.6  %). All three of 
the QTL mapping to chromosome 1A (Supplementary 
fig.  1.3) were detected in each environment as well as 
when performance was averaged over the environments. 
QFe.bhu-3B was associated with the highest PVE (27.1 %, 
at RGSC2012), but also had a major effect at IARI2012 
(26.9 %), in the GH trial (26.8 %) and across all environ-
ments (26.0 %). QFe.bhu-2A was associated with an overall 

PVE of 5.6 %. The positive allele was inherited from H+ 
26 at QFe.bhu-1A.3, but from cv. HUW 234 at each of the 
other four loci. The nearest markers to the five loci lay, 
respectively, at a distance of 0.90, 0.24, 0.40, 0.11 and 0.28 
(Table 3). For both traits, no QTL × QTL interaction was 
observed.

Discussion

Grain Zn and Fe concentration are both quantitatively 
inherited traits, as shown by their continuous distribution 
across the RIL population. However, the RILs also showed 
some transgression in both directions suggesting that both 
parents carried a few different genes with alleles contrib-
uting to increased Zn and Fe concentrations (Ozkan et al. 
2007; Xu et  al. 2012). Grain Zn concentration was rather 
more variable than grain Fe concentration. Other varietal 
contrasts have also shown substantial variation for the con-
tent of both minerals (Cakmak et  al. 2004; Tiwari et  al. 
2009; Xu et  al. 2012). Greenhouse-raised plants accumu-
lated more Zn and Fe in the grain than did the field-grown 
ones, as similarly observed by Welch et  al. (2005). The 
estimated broad-sense heritability for both grain Zn and Fe 
concentration varied from medium to high across the seven 
environments, in accordance with the observations made by 

Fig. 3   Partial linkage map derived from the T. spelta H+ 26 × T. aestivum cv. HUW 234 RIL population, indicating the location of QTL for 
grain Zn and Fe concentration
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Velu et al. (2012). Nevertheless, both grain Zn and Fe con-
centrations were quite consistent across the environments.

The accumulation of Zn was positively correlated 
(rp = 0.79**) with that of Fe, suggesting a shared genetic 
basis for the two traits. Comparing the derived QTL did 
reveal that the Zn locus on chromosome 2A co-localized 
with an Fe one (Fig.  3), which offers an opportunity to 
jointly improve both traits (Welch and Graham 2004). The 
existence of a positive correlation between grain Zn and Fe 
accumulation has been reported repeatedly in both bread 
wheat (Pomeranz and Dikeman 1983; Peterson et al. 1986; 
Raboy et al. 1991; Graham et al. 1999; Rengel et al. 1999; 
Balint et al. 2007; Peleg et al. 2009; Genc et al. 2009, Zhao 
et  al. 2009; Xu et  al. 2012), wild emmer (Cakmak et  al. 
2004; Morgonuov et  al. 2007; Peleg et  al. 2008), domes-
ticated emmer (Gregorio 2002) and triticale (Feil and Fos-
sati 1995). However, to date, the co-localization of grain 
Zn and Fe QTL has only been observed in tetraploid wheat 
(Peleg et al. 2009).

Although grain of the T. spelta parent H+ 26 accumu-
lated much more Zn than that of cv. HUW 234, positive 
alleles at two of the five grain Zn QTL identified were 
inherited from the T. aestivum parent. Similar locations for 
four of the QTL specifically, QZn.bhu-2A (Cakmak et  al. 
2004; Peleg et  al. 2009), QZn.bhu-3D (Xu et  al. 2012), 
QZn.bhu-6A (Cakmak et al. 2004) and QZn.bhu-6B: (Cak-
mak et  al. 2004; Distelfeld et  al. 2007; Genc et  al. 2009; 
Peleg et al. 2009) have been previously identified in other 
populations. The wild emmer allele of the grain protein 
locus Gpc-B1 has been shown to also enhance grain Zn 
and Fe content, and maps to a position consistent with that 
of QZn.bhu-6A (Uauy et  al. 2006). With respect to grain 
Fe concentration, the positive allele at only one of the 
five QTL was inherited from H+ 26. The location of two 
of the QFe-bhu loci coincides with previously mapped 
ones, namely, QFe-bhu-2A (Cakmak et al. 2004; Xu et al. 
2012; Peleg et al. 2009; Tiwari et al. 2009) and QFe-bhu-
3B (Peleg et al. 2009); Both H+ 26 and HUW 234 alleles 
contributed an additive effect on grain Zn and Fe concen-
tration, showing that the positive alleles were dispersed 
across the two parents; as a result, transgressive segregation 
occurred.

Biofortification of wheat can be achieved through plant 
breeding without affecting the yield or quality (Velu et al. 
2012). It is also a more sustainable and cost-effective solu-
tion (White and Broadley 2005). Significant knowledge has 
been gained on the molecular mechanisms affecting the 
accumulation of Fe (Bauer et al. 2004; Cakmak 2002) and 
Zn (Hacisalihoglu and Kochian 2003) in plants. In future, 
these researches could be applied to develop crops with 
enhanced mineral concentration through functional (DNA 
sequence) markers in conventional breeding or molecular 
targets for genetic engineering (Hacisalihoglu and Kochian 

2003). In this study, five QTL for grain Zn were identified, 
each mapping to a different chromosome, while the five Fe 
QTL mapped to just three chromosomes. Multi-environ-
mental experiments in wheat have led to the recognition of 
a number of QTL underlying grain micronutrient concen-
trations, which are effective across a range of environments 
(Peleg et al. 2009; Tiwari et al. 2009). Such loci would rep-
resent the prime target of any marker-aided selection effort 
aimed at enhancing grain Fe and/or Zn content, avoiding 
loci associated with large QEIs (Jansen et  al. 1995). The 
difficulty of using conventional breeding to improve grain 
mineral content means that marker-aided selection would 
be an attractive proposition, provided that robust QTL can 
be identified (Gupta et al. 2010).
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